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Abstract

Ranking theory is a formal epistemology that has been developed in over 600 pages in Spohn’s

recent book The Laws of Belief, which aims to provide a normative account of the dynamics of

beliefs that presents an alternative to current probabilistic approaches. It has long been received in

the AI community, but it has not yet found application in experimental psychology. The purpose

of this paper is to derive clear, quantitative predictions by exploiting a parallel between ranking

theory and a statistical model called logistic regression. This approach is illustrated by the

development of a model for the conditional inference task using Spohn’s (2013) ranking theoretic

approach to conditionals.
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1. Introduction

Recently, there has been a paradigm-shift in the psychology of reasoning (Evans,

2012). Whereas earlier research used deductive logic as the main normative model, recent

research has started to use probabilistic, Bayesian models, which represent our degrees of

beliefs as subjective probabilities. In the study of conditionals this is seen by the current

popularity of the suppositional theory of conditionals, which is based on the Ramsey test.

The Ramsey test consists of adding the antecedent to one’s knowledge base, while mak-

ing as few changes as possible, and evaluating the consequent on its supposition. This

theory thus models our understanding of the indicative, natural language conditional as a

conditional probability (Bennett, 2003; Edgington, 1995; Evans & Over, 2004; Oaksford

& Chater, 2007, ch. 5; Oaksford & Chater, 2010a).
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One issue that has been discussed extensively in formal epistemology, however, is the

problem of how to formally represent not degrees of beliefs but full beliefs in light of the

lottery paradox, which poses difficulties for the intuitive idea that full beliefs consist of

probabilities above a certain threshold (cf. Huber, 2013).1

Explication of the lottery paradox: suppose that Bel(A) iff P(A) >a, where Bel(A) rep-
resents a full belief in A. If a fair lottery is held with >a�1 tickets and exactly one

winner, then the probability that each individual ticket won’t win is above our thresh-

old. Thus, we will believe of each individual ticket that it won’t win. Yet, the conjunc-

tion of each of these beliefs is inconsistent with the belief that one of the tickets will

win. Therefore, we apparently cannot both hold that beliefs are closed under conjunc-

tions and accept that we have full beliefs in propositions that are assigned a probability

above a. However, in formal epistemology the closure of (rational) beliefs under logi-

cal operations is taken to be a minimal requirement of rationality (cf. Skovgaard-Olsen

(in review)).

Ranking theory was developed as a unified framework for representing both degrees of

beliefs and full beliefs that avoids this problem. In Spohn (2012) it has, moreover, been

elaborated into a comprehensive formal epistemology that is able to provide a normative

account of the dynamics of beliefs and non-monotonic reasoning.

As Leitgeb (2007) argues, it has not yet made it into the common knowledge of

cognitive scientists, but when theorizing about conditionals it is useful to invoke a notion

of conditional beliefs that is to be conceptually distinguished both from beliefs in condi-
tionals and from unconditional beliefs in propositions. In contrast with unconditional

beliefs, conditional beliefs do not themselves take ‘true’ and ‘false’ as values. Rather,

they are bi-propositional attitudes2 that connect two propositional contents {A,C} without

themselves expressing a proposition. Such bi-propositional attitudes are, inter alia,
manifested in inferential dispositions to infer C from A (in the absence of disabling con-

ditions). Furthermore, the impossibility results of Lewis and G€ardenfors cited in Leitgeb

(2007) prevent their identification with beliefs in conditionals. Thus, conditional beliefs

are a distinct species in our mental architecture that require a separate investigation (see

also Spohn, 2012, section 9.1).

Spohn (2013) argues that the problems with representing full (unconditional) beliefs in

probabilistic terms carry over to the treatment of conditionals, insofar as these problems

also affect this notion of conditional beliefs. The point is that the following logical law

of indicative conditionals:

if ‘if A, B’ and ‘if A, C’ then ‘if A, B∩C’

has its basis in the following law of rational, conditional belief:

if Bel(B|A) and Bel(C|A) then Bel(B∩C|A)
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where the conditional belief in B, given A, is represented as Bel(B|A). Yet, an identifica-

tion of conditional beliefs with high conditional probabilities would not be able to secure

this latter law, because the problems posed by the lottery paradox generalize to the condi-

tional case (ibid.: 1081–82). Consequently, Spohn (2013) uses ranking theory to state the

semantics of conditionals. Its principal advantage consists in possessing a notion of condi-

tional beliefs that steers free of such troubles. A further benefit of the theory is that it

makes formally precise the old idea, not captured in the suppositional theory, that the

antecedent should somehow be relevant to the consequent in natural language

conditionals, as we shall see.

Ranking theory has already been received in the AI community (cf. Goldszmidt &

Pearl, 1996; Kern-Isberner & Eichhorn, 2014). However, its application in psychology is

still to come. One obstacle delaying this has been difficulties in deriving clear, experi-

mentally distinguishable predictions. As we shall see, the theory of conditionals presented

in Spohn (2013) provides some qualitative predictions. But it is not clear how to turn

these into precise, quantitative predictions. The extension of ranking theory to be

presented in section 3 improves the situation.

2. Ranking theory

Before we dwell on these topics, it will serve our purposes, if we first have a simple

presentation of ranking theory. Ranking theory is built up on a metrics of beliefs, which

quantifies a grading of disbelief expressed by negative ranking functions, j. The object of

our degrees of disbelief is taken to be propositions (i.e., the content shared by sentences

of different languages). To formally represent propositions, ranking theory follows possi-

ble world semantics in representing propositions as sets of “possible worlds” or possibili-

ties. Therefore, to state ranking theory, first a non-empty set, W, of mutually exclusive

and jointly exhaustive possibilities is assumed. Next, an algebra, A, of subsets of W is

formed so that it is closed under logical operations. This collection of subsets of W repre-

sents all possible propositions. Doxastic attitudes such as believing and disbelieving prop-

ositions can then be represented by functions that are defined over A. Accordingly,

negative ranking functions expressing an agent’s degrees of disbelief can now be defined

as follows:

Definition 1: let A be an algebra over W. Then, j is a negative ranking function for A
iff j is a function from A into N ∪ {∞}, the set of natural numbers plus infinity, such

that for all A, B 2 A:

jðWÞ ¼ 0 and jðøÞ ¼ 1 ð1Þ
jðA [ BÞ ¼ min fjðAÞ; jðBÞg; ð2Þ
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where j(A) is called the negative rank of A. From the above it follows that:

jðAÞ ¼ 0 or jð �AÞ ¼ 0 or both ð3Þ

If j(A) < ∞, then the conditional rank of B, given A, is defined as follows:

jðBjAÞ ¼ jðA \ BÞ � jðAÞ ð4Þ

The intuition here is that the degree of disbelief in B, given A, is evaluated by consid-

ering the degree of disbelief in A ⋂ B while removing the disbelief in A (insofar as B is

now to be evaluated under the supposition of A).
Since negative ranks are said to represent degrees of disbelief, j(A) = 0 represents that

A is not disbelieved. When j(A) assigns a value of n > 0 to A, then A is said to be disbe-

lieved to the nth degree. Doxastic indifference is represented by neither disbelieving A
nor ~A, that is, jðAÞ ¼ jð �AÞ ¼ 0, and belief in A is represented in an indirect way by

disbelief in ~A, that is, j ( �A) > 0. Moreover, conditional ranks are used to represent

conditional beliefs.

On this basis, positive ranking functions representing degrees of beliefs can be defined

for A by:

bðAÞ ¼ jð �AÞ ð5Þ

Positive ranking functions can then be axiomatized by translating Eqs. 1, 2, and 4 into

their positive equivalents:

bðWÞ ¼ 1 and bðøÞ ¼ 0 ð6Þ

bðA \ BÞ ¼ min fbðAÞ; bðBÞg ð7Þ

bðBjAÞ ¼ bð �A [ BÞ � bð �AÞ ð8Þ

where the conditional degree of belief in B, given A, is represented as the degree of belief

in the material implication (A ⊃ B � ~A ⋃ B) while subtracting the degree of belief in

~A, which is the false-antecedent case, where the material implication is satisfied

trivially.

Moreover, it is possible to define two-sided ranking functions for A that combine the

gradings of disbelief and belief into one function:

sðAÞ ¼ bðAÞ � jðAÞ ¼ jð �AÞ � jðAÞ ð9Þ

sðBjAÞ ¼ bðBjAÞ � jðBjAÞ ¼ jð �BjAÞ � jðBjAÞ ð10Þ
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2.1. Ranking theory and the probability calculus

When one compares formal epistemologies expressed by ranks and probabilities, it

becomes apparent that there is a deep parallel between negative ranking functions and

probability distribution functions, as exhibited in Table 1 below (Spohn, 2012, ch. 5).

This is no accident. As Spohn (2009) points out, probabilities can be translated into

negative ranks. By applying the translation manual below, one is almost sure to obtain a

ranking theorem from any probabilistic theorem:

There is obviously a simple translation of probability into ranking theory: translate the

sum of probabilities into the minimum of ranks, the product of probabilities into the

sum of ranks, and the quotient of probabilities into the difference of ranks. Thereby,

the probabilistic law of additivity turns into the law of disjunction, the probabilistic

law of multiplication into the law of conjunction (for negative ranks), and the defini-

tion of conditional probabilities into the definition of conditional ranks. If the basic

axioms and definitions are thus translated, then it is small wonder that the translation

generalizes; take any probabilistic theorem, apply the above translation to it, and you

almost surely get a ranking theorem. (p. 209)

If negative ranking functions are treated as the logarithms of probabilities with a base,

a 2 (0,1), the translation is captured of products and quotients of probabilities as the sum

and difference of ranking functions. However, Spohn (ibid., 2012, p. 203) points out that

if the sum of probabilities is to be translated into the minimum of ranks, the logarithmic

base has to be infinitesimal. Therefore, for purposes of theoretical unification the latter

translation seems superior. Yet for psychological purposes this translation is deeply prob-

lematic, insofar as it would require that the participants had all of their degrees of disbe-

lief in A expressed in probabilities from 0 to 0 + e, where e is an infinitesimal quantity

that is bigger than but arbitrarily close to zero.

Consequently, we will work with a logarithmic base that allows the degrees of beliefs to

spread out more evenly across the probability scale (cf. section 7). But we must not forget that

it comes with the prize of being unable to translate the sum of probabilities into the minimum

of ranks, as noted above. This leaves us one step further away from a theoretical unification of

ranks with probabilities, and it implies that we are only dealing with an approximation.

However, this does not mean that the translation would have been perfect on the infinitesimal

Table 1

Comparison between the probability calculus and ranking theory

Probability Calculus Ranking Theory

P(A∩B) = P(A)�P(B|A) j(A∩B) = j(A) + j(B|A)

PðAjBÞ ¼ PðBjAÞ�PðAÞ
PðBÞ j(A|B) = j(B|A) + j(A) – j(B)

PðBÞ ¼ Pn
i

PðBjAiÞ � PðAiÞ jðBÞ ¼ min
i� n

j BjAið Þ þ jðAiÞ½ �

852 N. Skovgaard-Olsen / Cognitive Science 40 (2016)



alternative. In fact, Spohn (2012: 204) already lists 12 deviations. Moreover, taking this step

allows us to establish a connection with existing psychological literature.

However, it should be noted that from a psychological perspective, one general

advantage of working directly with logarithms over probabilities is that the computations

become much easier as difficult multiplications and divisions are now replaced by addi-

tion and subtraction. Hence, the more direct route of applying ranking theory directly to

psychological experiments could also have been pursued. Indeed, in Juslin, Nilsson, Win-

man, and Lindskog (2011), some preliminary evidence has already been reported wherein

the notorious base-rate neglect can be reduced once the task is presented in a logarithmic

format instead of in a probabilistic format. Juslin et al. (2011) thus speculate that a linear,

additive integration of information is the intuitive, default approach when people lack

access to, or are unable to implement, overriding analytic (e.g., multiplicative) rules. Still,

the present paper adopts the more conservative approach of first translating ranks into

probabilities and then identifying applications to psychology of reasoning to establish

more contact with existing research.

2.2. Conditionals and reason relations

In Spohn (2012, ch. 6) an epistemic notion of relevance is introduced, which is given

a pivotal role in his semantics of conditionals (2013) and account of causation (2012, ch.

14). Inspired by the notion of statistical dependency and independency, Spohn defines

relevance as follows:

A is positively relevant toC iff sðCjAÞ[ sðCj �AÞ ð11Þ

A is irrelevant toC iff sðCjAÞ ¼ sðCj �AÞ ð12Þ

A is negatively relevant toC iff sðCjAÞ\sðCj �AÞ ð13Þ

Furthermore, Spohn argues that this notion can be used to analyze the notion of reasons

by holding that A is a reason for C iff Eq. 11 holds and a reason against C iff Eq. 13 holds.

He is then able to use this notion of reasons to analyze four types of reason relations:

Supererogatory reason sðCjAÞ[ sðCj �AÞ[ 0 ð11aÞ

Sufficient reason sðCjAÞ[ 0� sðCj �AÞ ð11bÞ

Necessary reason sðCjAÞ� 0[ sðCj �AÞ ð11cÞ

Insufficient reason 0[ sðCjAÞ[ sðCj �AÞ ð11dÞ

The starting point for Spohn’s semantics is that conditionals express conditional

beliefs, or some feature about our conditional beliefs. In ranking theory, our conditional

beliefs can be expressed by s (C|A) > 0, and the inequalities above thus express features
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of our conditional beliefs. Now, in adopting this starting point, the most basic idea is that

conditionals directly express conditional beliefs. Spohn (2015, p. 2) suggests that this is

what the Ramsey test really amounts to. But as Spohn (2013) further argues, there are

many other aspects of our conditional beliefs that conditionals can be used to express. In

particular, conditionals can be used to express the reason relations described by

Eqs. 11–13.3 Whereas these inequalities focus our attention on the extent to which the

antecedent is rank (or probability) raising for the consequent, the Ramsey test merely

consists of adding the antecedent to our knowledge base and evaluating the probability of

the consequent on its basis.

Thus, these constructions hold the promise of making the old idea precise that condi-

tionals codify inferential relations and that the antecedent can be seen as a reason for the

consequent in central applications of conditionals. As such, the ranking theoretic approach

to conditionals finds itself in continuity with Ryle (1950), Rott (1986), Strawson (1986),

Brandom (1994), Douven (2008, 2013), and Krzy _zanowska (2015). A guiding idea of this

tradition is that it constitutes a semantic defect when the antecedent of a conditional is

irrelevant to the consequent, as in Edgington’s (1995, p. 267) example: “If Napoleon is

dead, Oxford is in England.” In contrast, other accounts will have to set such infelicities

aside as pragmatic phenomena that arise due to violations of Gricean norms of informa-

tive conversations. Yet, as Skovgaard-Olsen (forthcoming) argues, such an explanation

suffers from the problem that these conditionals lack a standard interpretation, which can

be decoded by a minimum of contextual information, whereby they would come out as

felicitous even when dealing with individual reasoning. Hence, as they are both defective

w.r.t. contexts of conversation and contexts of individual reasoning, their defect must be

located in problems associated with their meaning.

A further example of a conditional connective that can be analyzed by means of

Eqs. 11a–11d is “even if A, then still C.” In such cases, the speaker may be seen as

commenting on the assumption that A is a reason against C (which is made either by the

speaker, hearer, or somebody else) and denying that A is an insufficient reason against C
(ibid.). Moreover, Spohn (2015) lists other candidates for analysis through his account of

reason relations such as “although,” ”despite,” and ”because.” Accordingly, “C although

A” roughly expresses that C was not to be expected, given A, “C despite A” likewise

expresses negative relevance, and “C because A,” inter alia, expresses that C was bound

to obtain, given A. Finally, this list has been extended to cover about 30 further utterance

modifiers such as “however” and “be that as it may” in Skovgaard-Olsen (forthcoming).

3. Extending ranking theory by logistic regression

The purpose of section 3 is to extend the ranking theoretic approach to conditionals by

logistic regression to enhance the former’s use for experimental psychology. In doing so,

the present model follows an old, venerable tradition in cognitive psychology of using an

analogy between statistics and cognition in formulating new theories. A good example is

the signal detection theory, which arose through an analogy between sensory discrimina-
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tion and hypothesis testing for statistical significance that led to the discovery of a new

kind of data based on the idea of type I error (rejecting H0 when in fact it is true) and

type II error (failing to reject H0 when in fact it is false) (see Gigerenzer & Murray, 1987

and Gigerenzer, 1988 for a detailed discussion).

As we shall see, the model to be introduced has the following nice qualities: (a) it pro-

vides equations that can produce quantitative predictions for the conditional inference

task with only three parameters that are qualitatively constrained; (b) it throws new light

on what is involved in performing the Ramsey test; (c) it allows us to introduce a numer-

ical/verbal scale for two-sided ranking functions that has already found some empirical

support; and (d) it allows us to combine a theory of conditionals that is already well-

established in the psychology of reasoning with accounts emphasizing probability raising.

3.1. Logistic regression

In logistic regression, the probability that an observed, or measured, dependent

variable, Y, takes the value “1” (i.e., “true”) is represented as a weighted, non-linear func-

tion of the values of a set of independent variables {X1,. . .,Xn} that function as predictors

and the intercept, b0:

P Y ¼ 1jX1; . . .;Xnð Þ ¼ z

1þ z
for z ¼ eb0þb1�X1þb2�X2þ...þbn�Xn ð14Þ

The indexed weights {b1,. . .,bn} are estimated from the data and express how much

the indexed predictor contributes to reducing the variance in the dependent variable, when

optimization methods are used to fit the model to the data (Eid, Gollwitzer, & Schmitt,

2010, ch. 21). For our purposes, it is moreover pleasing to note that what is being esti-

mated is the conditional probability that the dependent variable takes a particular value.

The model is thereby able to come into contact with: (i) approaches to conditionals that

emphasize probability raising (Douven, 2008, 2013; Spohn, 2013), which focuses on the

relationship between P(C|A) and P(C| �A), and (ii) the suppositional theory of conditionals

(Evans & Over, 2004), which takes P(if A, C) = P(C|A) as its point of departure.4 To

simplify the calculations, Eq. 14 can be transformed into Eq. 14a:

P Y ¼ 1jX1; . . .;Xnð Þ ¼ 1

1þ 1
z

ð14aÞ

Furthermore, it should be noted that due to the non-additive and non-linear relationship

between the independent variables and probabilities in Eq. 14, the effect of one indepen-

dent variable (Xi) varies with the values of the other independent variables and the pre-

dicted probabilities. For this reason the effect of Xi cannot be fully represented by a

single coefficient; instead, it has to be evaluated at a particular value, or set of values,

which renders its interpretation cumbersome (Pampel, 2000, ch. 2).
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It may therefore be useful to note that two transformations for Eq. 14 exist, where the

effect of Xi can be summarized by a single coefficient. When Eq. 14 is stated in terms of

conditional odds (Oi),
5 ebi represents the factor by which the odds are multiplied when Xi

increases by one unit and all other variables are held constant:

Oi ¼ eb0þb1�X1þb2�X2þ...þbn�Xn ¼ eb0 � eb1�X1 � eb2�X2 . . .ebn�Xn for i ¼ 1; . . .; n ð14bÞ

Furthermore, when Eq. 14 is stated in terms of logged odds, bi represents how much Ŷ
changes with a one unit change to the indexed predictor when all other variables are held

constant:

lnðOiÞ ¼ b0 þ b1 � X1 þ b2 � X2 þ . . .þ bn � Xn for i ¼ 1; . . .; n ð14cÞ

Eq. 14c parallels multiple linear regression. (However, the units have changed to logged

odds.)

3.2. Logistic regression and ranking theory

At first glimpse it may seem puzzling what this statistical model has to do with

ranking theory. But the relationship between the two will gradually unfold throughout this

paper. The purpose of this subsection is to introduce some initial observations.

As Spohn (2012: p. 76) points out, although using two-sided ranking functions may be

the most intuitive way of presenting ranking theory, there is no simple axiomatization of

them. Furthermore, since two-sided ranking functions appear to be a derived notion that

is ultimately to be defined in terms of negative ranking functions, he prefers that the

latter as an epistemological tool. However, as we will begin to see, the former is attrac-

tive for psychological purposes. Moreover, as we will now see, two-sided ranking

functions are not merely the derived notion that they appeared to be. In fact, they have

their own interpretation.

Since logistic regression deals with logits, or logged odds, it is interesting to note that

two-sided ranking functions give us a comparable metrics. However, the logarithmic

bases differ and two-sided ranking functions are actually the logged odds of a proposition

not taking the value “true”:

sðAÞ ¼ bðAÞ � bð �AÞ ¼ jð �AÞ � jðAÞ

jðAÞ � loga PðX ¼ 1Þð Þ;where 0\a\1

sðAÞ � loga PðX ¼ 0Þð Þ � loga PðX ¼ 1Þð Þ ¼ loga
PðX ¼ 0Þ
PðX ¼ 1Þ

� �

To understand why two-sided ranking functions take this form, it is useful to consider

that:
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loga
PðxÞ

1� PðxÞ
� �

¼ �loga
1� PðxÞ
PðxÞ

� �

log1
a

1� PðxÞ
PðxÞ

� �
¼ �loga

1� PðxÞ
PðxÞ

� �

Therefore,

log1
a

1� PðxÞ
PðxÞ

� �
¼ loga

PðxÞ
1� PðxÞ

� �

So when two-sided ranking functions are the logged odds of a proposition not taking the

value “true,” with a logarithmic base of a 2 (0,1), they can always be rewritten as the

logged odds of a proposition taking the value “true,” with the logarithmic base of a�1.

Thus, if a logarithmic base of e�1 is chosen for ranking functions, it is possible to

bring the two formalisms into contact, because the logarithmic base of our regression

equations is e. As we shall see, this observation will later prove to be crucial when we

begin deriving predictions from a model based on logistic regression for conditional rea-

soning.

4. The conditional inference task

When it comes to producing predictions for the psychology of reasoning, it is impor-

tant to consider existing experimental paradigms, because most of the psychology of rea-

soning is organized around a few experimental paradigms that have been studied

extensively (Manktelow, 2012). We will therefore continue our investigation of the paral-

lel between logistic regression and ranking theory by focusing on a particular experimen-

tal paradigm.

In the conditional inference task the participants are asked to rate the conclusions of

the following four inferences: MP (modus ponens: p ? q, p ∴ q), MT (modus tollens: p
? q, ¬q ∴ ¬p), AC (affirmation of the consequent: p ? q, q ∴ p), and DA (denial of
the antecedent: p ? q, ¬p ∴ ¬q). Of these, only MP and MT are classically valid if

‘?’ is read as the material implication. As Singmann and Klauer (2011) point out, this

task has been given with two different types of instructions. In the old, deductive para-

digm the participants were typically asked to provide binary responses to questions

about the validity of the conclusion, given the premises, while ignoring their background

knowledge. In contrast, in the new, Bayesian paradigm the participants are typically

asked to assess how likely the conclusion is, given the premises, on a graded scale,

while invoking their background knowledge. In the old paradigm, the frequency with

which MP was endorsed tended to be 89%–100% with abstract material, while the

equally valid MT was typically only endorsed in 40%–80% of the cases. Moreover, the
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logically invalid AC and DA were typically endorsed in 20%–75% of the cases (Evans

& Over, 2004, p. 46). In the new paradigm, all four inferences are likewise endorsed

but to different degrees. These are some of the key findings that have contributed to

questioning the appropriateness of deductive logic as a normative model of human rea-

soning in the current rationality debates in cognitive psychology (ibid.; Oaksford &

Chater, 2007; Manktelow, 2012).

However, it is far from obvious that AC and DA should be seen as general flaws of

reasoning. After all, AC characterizes the type of abductive inference embodied in Bayes’

theorem, where we reason from an effect back to its potential cause,6 which is character-

istic of scientific reasoning. Bayes’ theorem expresses this type of reasoning by requiring

that we update our degree of belief in a hypothesis after the confirmation of one of its

predictions:

PðHjEÞ ¼ PðEjHÞ � PðHÞ
PðEÞ $ PðAjCÞ ¼ PðCjAÞ � PðAÞ

PðCÞ ð15Þ

To be sure, I. Douven (personal communication) rightly points out that not only infer-

ences to the best explanation take the form of AC, but also inferences to the worst expla-
nation. However, what the ranking theoretic approach to conditionals validates is that, as

we shall see, given there are acceptable forward inferences from A to C, the premise C
should also be viewed as raising the degree of belief in the conclusion A. Thus, it is not

a blank check to reason from C to A in whatever outrageous conditionals we like for

which it holds that we would not be prepared to reason from A to C.
Moreover, DA also has its justification in argumentative contexts when it is used to

challenge a reason that has been offered in support of C by urging that C has been

advanced on an insufficient basis, as Godden and Walton (2004) argue.

It would therefore seem premature to dismiss the endorsement of these types of infer-

ences as a symptom of irrationality merely because such inferences are connected with

uncertainty and fail to be validated by classical logic. Thus, it is an attractive feature of

Spohn’s (2013) relevance approach that it is not forced to render these inferences invalid.

In fact, Spohn’s (2013) theory entails that the respective premises in MP, MT, AC, and

DA all strengthen the degree of belief in their respective conclusions. However, this does

not yet imply that the premises constitute sufficient reasons for the conclusions and that

the conclusions of AC and DA should thus be accepted in an all-or-nothing sense.7 What

it means is rather that (a) the premises provide support for the conclusions in all four

inferences, (b) there will be instances of AC and DA where the conclusion should be

rationally accepted in an all-or-nothing sense; even if this rule does not hold for all cases,

and finally that (c) the conclusions of all four inferences should have a non-zero degree

of endorsement. In contrast, the suppositional theory of conditionals renders AC and DA

invalid (Evans & Over, 2004, p. 45).

Moreover, the ranking theoretic approach to conditionals is compatible with the

asymmetry in the degrees of endorsement that has been found. However, it is unable to
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deliver any precise, quantitative predictions about these endorsement rates, as it stands.

This, however, is accomplished by the extension of the theory to be presented below.

To back up a little, what leads to the claims above concerning AC and DA is that

positive relevance is a symmetric relation (see Spohn, 2012, ch. 6):

If sðCjAÞ[ sðCj �AÞ; then sðAjCÞ[ sðAj �CÞ ð16Þ

Therefore, if A is positively relevant to C, and it is acceptable to use the conditional in

forward inferences from A to C, then C also provides support for A.
Moreover, as Spohn (2013, p. 1092) points out, it also holds that:

If A is positively relevant toC; then	A is positively relevant to	C ð17Þ

This, together with Eq. 16, yields contraposition:

If A is positively relevant toC; then	C is positively relevant to	A ð18Þ

Equation 16 underwrites acceptable instances of AC, Eq. 17 underwrites acceptable

instances of DA, and Eq. 18 underwrites acceptable instances of MT.8

Finally, as Spohn (2013, p. 1093) points out, these symmetrical relevance relations

make room for explaining the varying degrees of endorsement for these four inferences,

because although the relations run in both directions they need not do so to the same

degrees (see also Spohn, 2012, p. 112).

However, this only provides us with a rough, qualitative prediction of the results of

the experiments on the conditional inference task. But it is definitely on the right track. A

typical finding using abstract content and instructions stressing logical necessity is that

MP>MT>AC≥DA, and a typical finding using realistic content is that the degrees of

endorsement depend on perceived sufficiency and necessity of the antecedent for the con-

sequent (Klauer, Beller, & H€utter, 2010). What these ratings show is that we are not

looking for a relation governed by perfect symmetry when modeling the relationship

between the antecedent and consequent in conditionals, because then we would end up

with the bi-conditional interpretation, wherein MP, MT, AC, and DA should all be fully

endorsed to the same degrees. On the other hand, the data do not support the material

implication interpretation, whereby MP and MT should be fully endorsed while AC and

DA should be fully rejected (Evans & Over, 2004). Instead, what we see is that all four

inferences are endorsed, but to different degrees, which requires a relationship between

the antecedent and consequent that holds in both directions but to different degrees.

4.1. The logistic regression model

If we are to turn these observations into quantitative predictions, we can exploit the

fact that something similar holds for logistic regression. Firstly, it is useful to note that

the following fact about linear regression has a counterpart in logistic regression.
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Correlation and linear regression are sometimes9 distinguished by pointing out that the

former is symmetric, whereas the latter is asymmetric in the following sense: In the case

of a correlation, no distinction is made between dependent and independent variables,

whereas it makes a difference which variables are treated as dependent and independent

in a regression equation.

To be sure, it is possible to treat Y as a predictor of X instead of treating X as a predic-

tor of Y by using Table 2, where ‘sY’ is the sample standard deviation, ‘sXY’ is the sample

covariance, ‘rXY’ is the sample correlation coefficient, and ‘�x’ is the sample mean.

But the regression lines, to which the scatter plot will be fitted, will differ depending

on whether X is treated as a predictor of Y or Y is treated as a predictor of X. It turns out
that something similar holds for logistic regression, when the independent variable is also

a binary variable.10 With this in mind, we now turn to the asymmetry between when X is

used as a predictor of Y and Y is used as a predictor of X in logistic regression, as exhib-

ited in Table 3. As we notice, the slopes are identical,11,12 but the intercepts differ.

Accordingly, we have now reached a point, where we are able to see that the logistic

regression equations give us a model of a predictor relationship that has the desired prop-

erty of a relation that holds in both directions but to different degrees, which we observed

above would be useful in modeling the degrees of endorsement of MP, MT, AC, and

DA. Exploiting this fact, the following equations can be formulated, where the conse-

quent (C = {Y = 1}, non-C = {Y = 0}) is also used as a predictor of the antecedent

(A = {X = 1} and non-A = {X = 0}):

ðMPÞ PðY ¼ 1jX ¼ 1Þ ¼ 1

1þ e�ðb0þb1Þ ð19Þ

ðACÞ PðX ¼ 1jY ¼ 1Þ ¼ 1

1þ e�ðb

0
þb1Þ ð20Þ

Table 2

Linear Regression

X as a Predictor of Y Y as a Predictor of X

Slope b1 ¼ rXY � sYsX ¼ sXY
s2X

b1

 ¼ rXY � sXsY ¼ sXY

s2Y

Intercept b0 ¼ �y� b1 � �x b0

 ¼ �x� b1


 � �y

Table 3

Logistic Regression

X as a Predictor of Y Y as a Predictor of X

Intercept eb0 ¼ PðY ¼ 1jX¼ 0Þ
PðY ¼ 0jX¼ 0Þ eb



0 ¼ PðX¼ 1jY ¼ 0Þ

PðX¼ 0jY ¼ 0Þ

“Slope” eb1 ¼ PðY ¼ 1;X¼ 1Þ
PðY ¼ 0;X¼ 1Þ � PðY ¼ 0;X¼ 0Þ

PðY ¼ 1;X¼ 0Þ
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ðDAÞ PðY ¼ 0jX ¼ 0Þ ¼ 1

1þ eb0
ð21Þ

ðMTÞ PðX ¼ 0jY ¼ 0Þ ¼ 1

1þ eb


0

ð22Þ

As we shall see later, these equations have a range of nice predictions. In section 3.2

we already noticed the close relationship between logistic regression, which has a logged

odds format, and two-sided ranking functions when a logarithmic base of e�1 is chosen.

It is now possible to make the parallel even closer by considering Eqs. 19–22 under a

different light. In their logged odds format they take the following form:

ðMPÞ ln
PðY ¼ 1jX ¼ 1Þ
PðY ¼ 0jX ¼ 1Þ

� �
¼ b0 þ b1 ð23Þ

ðACÞ ln
PðX ¼ 1jY ¼ 1Þ
PðX ¼ 0jY ¼ 1Þ

� �
¼ b
0 þ b1 ð24Þ

ðDAÞ ln
PðY ¼ 0jX ¼ 0Þ
PðY ¼ 1jX ¼ 0Þ

� �
¼ �b0 ð25Þ

ðMTÞ ln
PðX ¼ 0jY ¼ 0Þ
PðX ¼ 1jY ¼ 0Þ

� �
¼ �b
0 ð26Þ

However, since the following holds:

ln
PðY ¼ 1jX ¼ 1Þ
PðY ¼ 0jX ¼ 1Þ

� �
¼ log1

e

PðY ¼ 0jX ¼ 1Þ
PðY ¼ 1jX ¼ 1Þ

� �
¼ sðCjAÞ

ln
PðX ¼ 1jY ¼ 1Þ
PðX ¼ 0jY ¼ 1Þ

� �
¼ log1

e

PðX ¼ 0jY ¼ 1Þ
PðX ¼ 1jY ¼ 1Þ

� �
¼ sðAjCÞ

ln
PðY ¼ 0jX ¼ 0Þ
PðY ¼ 1jX ¼ 0Þ

� �
¼ log1

e

PðY ¼ 1jX ¼ 0Þ
PðY ¼ 0jX ¼ 0Þ

� �
¼ sð �Cj �AÞ

ln
PðX ¼ 0jY ¼ 0Þ
PðX ¼ 1jY ¼ 0Þ

� �
¼ log1

e

PðX ¼ 1jY ¼ 0Þ
PðX ¼ 0jY ¼ 0Þ

� �
¼ sð �Aj �CÞ

we now see that:

ðMPÞ sðCjAÞ ¼ b0 þ b1 ð27Þ
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ðACÞ sðAjCÞ ¼ b
0 þ b1 ð28Þ

ðDAÞ sð �Cj �AÞ ¼ �b0 ð29Þ

ðMTÞ sð �Aj �CÞ ¼ �b
0 ð30Þ

Furthermore, Table 3 can be reformulated on the basis of two-sided ranking functions

as shown in Table 4.

Table 4 makes the parametrization much more perspicuous than Table 3. In the case

of b0 and b0*, we are dealing with a measure of our belief in the consequent when the

predictor takes the value “false,” whereas the b1 parameter quantifies the relevance of the

predictor for the consequent. We moreover observe that in spite of the fact that the abso-

lute magnitudes of s (C|A) and sðCj �AÞ may diverge from the magnitudes of s(A|C) and

sðAj �CÞ, respectively, the differences in these pairs stay identical and, therefore, the b1
parameter stays the same no matter from which direction we view the predictor relation-

ship. However, as the intercepts differ, situations may arise where C (taking the place as

a conclusion with A as a premise) should be endorsed to a greater degree than A (when A
is the conclusion and C is a premise).

To explain these parallels we are observing between logistic regression and two-sided

ranking functions, it suffices to note that:

b0 þ b1 ¼ ln
PðY ¼ 1jX ¼ 0Þ
PðY ¼ 0jX ¼ 0Þ

� �
þ ln

PðY ¼ 1jX¼ 1Þ
PðY ¼ 0jX¼ 1Þ
P Y ¼ 1jX¼ 0ð Þ
PðY ¼ 0jX¼ 0Þ

0
@

1
A ¼ ln

PðY ¼ 1jX ¼ 1Þ
PðY ¼ 0jX ¼ 1Þ

� �

But, of course:

ln
P Y ¼ 1jX ¼ 1ð Þ
PðY ¼ 0jX ¼ 1Þ

� �
¼ log1

e

P Y ¼ 0jX ¼ 1ð Þ
PðY ¼ 1jX ¼ 1Þ

� �
¼ sðCjAÞ

Moreover, something similar holds for Eqs. 28–30. In other words, it turns out that

Eqs. 19–22 can be derived from probabilistic transformations of two-sided ranking func-

tions once a logarithmic base of e�1 is chosen. This observation is extremely useful,

because it implies that we can use Eqs. 19–22 to derive precise, quantitative predictions

for what had to remain qualitative predictions in Spohn (2013). In section 5 we will see

exactly how rich these predictions turn out to be.

Table 4

Translation of Table 3 into ranking functions

X as a Predictor of Y Y as a Predictor of X

Intercept b0 ¼ sðCj �AÞ b
0 ¼ sðAj �CÞ
“Slope” b1 ¼ sðCjAÞ � sðCj �AÞ ¼ sðAjCÞ � sðAj �CÞ
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4.2. Modeling the conditional inference task

The model provided in section 4.1 has three free parameters. We will now see how

one can introduce qualitative constraints on the values assigned to the estimated

parameters.

To do so, it is useful to keep the theoretical background in mind. In the psychology

of reasoning there has been a focus on the influence of disablers and alternative anteced-
ents on conditional reasoning, which has, inter alia, been used to measure the influence

of content on deductive reasoning. Disablers are conditions that prevent the consequent

from obtaining even when the antecedent obtains, and alternative antecedents are condi-

tions other than the antecedent that are sufficient for bringing about the consequent.

Therefore, if we take the conditional “if the key is turned, the car will start,” “the battery

is dead” would be a disabler and “the car has been hot-wired” would be an alternative

antecedent.

There is an experimental paradigm, going back to Thompson (1994) and Cummins

(1995), which has studied how the endorsement rates of MP, MT, AC, and DA are

affected by changes in the perceived sufficiency and necessity of the antecedent for the

consequent. Such changes are induced by manipulating the availability of disablers and

alternative antecedents. The general finding is that endorsement rates of AC and DA

decrease with the availability of alternative antecedents, and the endorsement rates of MP

and MT decrease with the availability of disablers (Politzer & Bonnefon, 2006). Subse-

quent models of conditional reasoning have focused on integrating a component which

takes activation of memory traces of disablers and alternative antecedents into account

(Cummins, 2010; De Neys, 2010). Moreover, studies based on means–end relations,

permission, precaution, promises, tips, warnings, threats, temporal relations, and obliga-

tions have shown that the phenomenon generalizes beyond causal inferences (Beller,

2008; Politzer & Bonnefon, 2006, p. 497; Verbrugge, Dieussaert, Schaeken, Smessaert,

H. & William, 2007; see also Oaksford & Chater, 2010b).

Due to this theoretical background, it is a nice feature of our model that it is able

to integrate the influence of disablers and alternative antecedents. Indeed, the illumina-

tion that the present account brings to this issue goes beyond this, because through

Spohn’s (2012: ch. 6) notion of sufficient and necessary reasons, we are able to make

sense of the talk in the psychological literature about degrees of perceived sufficiency

and necessity by pointing out that the former can be cashed out in terms of how far

above 0 s(C|A) is and the latter can be cashed out in terms of how far below 0

sðCj �AÞ is.13

The way in which the model integrates the influence of disablers and alternative

antecedents is by the intended interpretation of its parameters, as outlined in Table 3. A

natural assumption is: (a) that the presence of disablers has the effect of increasing
P(X = 1, Y = 0) (i.e., “P(X = 1, Y = 0)↑”) and decreasing P(X = 1, Y = 1) (i.e.,

“P(X = 1, Y = 1)↓”); and (b) that the presence of alternative antecedents has the effect of

P(X = 0, Y = 1)↑ and P(X = 0, Y = 0)↓. According to Table 3, the presence of disablers

should thus have the effect of b0*↑ and b1↓↓, and the presence of alternative antecedents
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should have the effect of b0↑↑, b0*↑, and b1↓↓. This introduces a qualitative constraint on

the values assigned to the parameters of the model to ensure that it does not merely fit

the data due to the flexibility generated by its free parameters.

When it comes to modeling the conditional inference task, it should be noted that

Klauer et al. (2010) employ two versions of the task. On the one hand, there is a baseline

condition, where the conditional rule has been removed and the participants are evaluat-

ing the conclusion merely on the basis of the minor premise and their background

knowledge (i.e., MPR: p ∴ q; MTR: ¬q ∴ ¬p; ACR: q ∴ p; DAR: ¬p ∴ ¬q, where the

subscript stands for “reduced”). On the other hand, there is a rule-present condition,

where the conditional rule has been added as a major premise, as in the original version

of the task.

A natural assumption is that the baseline condition makes the participants access their

conditional beliefs to assign probabilities to the conclusion, given the minor premise.

Accordingly, their performance in this condition can be modeled by Eqs. 19–22, which
depict the conditional probability of the conclusion given the minor premise as deter-

mined by two-sided ranking functions representing their conditional beliefs. On the basis

of Spohn’s relevance approach, it is moreover natural to suppose that the presence of the

conditional rule in the original version of the task leads to an increase in the perceived

relevance of the antecedent for the consequent, which amounts to an increase in the b1
parameter. However, as b1 can increase in several ways, it seems most natural that it

takes the form of an increase in P(Y = 1, X = 1), which is counterbalanced by a decrease

in P(Y = 0, X = 1) to ensure that we end up with a probability distribution respecting the

axioms of the probability calculus. According to Table 3, these changes end up having

the effect of b0*↓ and b1↑↑, which affects the conditional probabilities calculated by

Eqs. 19–22 as follows: MP↑↑, MT↑, AC↑.
If we abstract from a minor increase to DA in figures 4 and 5 in Klauer et al. (2010),

which was not consistent across all experiments, this prediction of the effect of the

presence of the rule in the conditional inference task fits well with the pattern of results

reported in that paper.14

According to the Bayesian alternative developed by Oaksford and Chater,

which was examined in Klauer et al. (2010), the presence of the rule is to be mod-

eled by e(D)↓ in the following equations, which are used for modeling the baseline

condition:

ðMPÞ P qjpð Þ ¼ 1� e Dð Þ ð31Þ

ðMTÞ P :pj:qð Þ ¼ 1� b Dð Þ � a Dð Þe Dð Þ
1� b Dð Þ ð32Þ

ðACÞ P pjqð Þ ¼ a Dð Þ 1� e D½ �ð Þ
b Dð Þ ð33Þ
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ðDAÞ P :qj:pð Þ ¼ 1� b Dð Þ � a Dð Þe Dð Þ
1� a Dð Þ ð34Þ

a(D) is the perceived probability of p events for the content D.15 b(D) is the perceived

probability of q events for the content D. Finally, e(D) is the exceptions parameter or the

conditional probability of not-q given p for the content D.
As H. Singmann & K. C. Klauer (personal communication) have rightly pointed out,

Eqs. 19–22 and 31–34 should be mathematically equivalent to the extent to which both

models are reparametrizations of the joint probability distribution. However, they are

based on different semantics of the conditional, so they should model the presence of the

rule differently. In particular, relevance considerations should not play a role in the Oaks-

ford & Chater model as they are not part of the suppositional theory of conditionals on

which it is based (Bennett, 2003; Edgington, 1995). Moreover, the suppositional theory

of conditionals renders AC and DA invalid (Evans & Over, 2004, p. 45). In contrast, rele-

vance considerations should play a role in the logistic regression model and it is based on

a theory that renders MP, MT, AC, and DA acceptable while allowing the endorsement

of their respective conclusions to take different degrees. With a bit of calculation,

Eqs. 31–34 can be rewritten as follows:

ðMPÞ P X ¼ 1; Y ¼ 1ð Þ
P X ¼ 1; Y ¼ 1ð Þ þ P X ¼ 1;Y ¼ 0ð Þ ð35Þ

ðMTÞ P Y ¼ 0;X ¼ 0ð Þ
P Y ¼ 0;X ¼ 0ð Þ þ P Y ¼ 0;X ¼ 1ð Þ ð36Þ

ðACÞ P X ¼ 1; Y ¼ 1ð Þ
P X ¼ 1; Y ¼ 1ð Þ þ P X ¼ 0;Y ¼ 1ð Þ ð37Þ

ðDAÞ P X ¼ 0; Y ¼ 0ð Þ
P X ¼ 0; Y ¼ 0ð Þ þ P X ¼ 0;Y ¼ 1ð Þ ð38Þ

Supposedly, the decrease in the exceptions parameter, e(D), in the presence of the con-

ditional rule takes the form of P(Y = 0, X = 1)↓. The result is MP↑ and MT↑. However,
if the axioms of the probability calculus are to be satisfied after this change has occurred,

then P(Y = 0, X = 1)↓ must be counterbalanced by P(Y = 1, X = 1)↑, which yields the

same result as above, to wit: MP↑↑, MT↑, AC↑. Yet, it is quite puzzling why a model

based on a semantics of the conditional that renders AC invalid should end up predicting

that the presence of the conditional rule leads to an increase in AC. This poses a dilemma

for the Oaksford and Chater model: Either predictions should be tolerated that are in

accordance with the underlying theory at the cost of depicting the participants as probabi-

listically incoherent, or the model should be allowed to make a prediction that is invalid

according to its underlying theory.
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5. Deriving further predictions

In deriving further predictions from our model, it is useful to return to the specification of

the notions of reason and relevance from section 2.2, extend it to cover all of the cases of A
being a reason against C, and substitute regression weights for two-sided ranking functions:

A is positively relevant to C iff b0 þ b1 [ b0 ð39Þ

A is a supererogatory reason for C iff b0 þ b1[ b0 [ 0

A is a sufficient reason for C iff b0 þ b1 [ 0� b0

A is a necessary reason for C iff b0 þ b1 � 0[ b0

A is an insufficient reason for C iff 0[ b0 þ b1 [ b0

A is irrelevant to C iff b0 þ b1 ¼ b0 ð40Þ

A is negatively relevant to C iff b0[ b0 þ b1 ð41Þ

A is a supererogatory reason against C iff 0[ b0 [ b0 þ b1

A is a sufficient reason against C iff b0 � 0[ b0 þ b1

A is a necessary reason against C iff b0 [ 0� b0 þ b1

A is an insufficient reason against C iff b0[ b0 þ b1[ 0

As we notice, A is positively relevant to C whenever b1 > 0, A is irrelevant to C
whenever b1 = 0, and A is negatively relevant to C whenever b1 < 0. Using this observa-

tion and the inequalities in Eqs. 39–41, it is possible to derive predictions about the

degrees of endorsement of MP, MT, AC, and DA for different types of reason relations.

5.1. Sufficiency and necessity

A is a sufficient reason for C:

b0 þ b1[ 0 $ 1

1þ e�ðb0þb1Þ [
1

2
$ MP[

1

2

b0� 0 $ 1

1þ eb0
� 1

2
$ DA� 1

2

866 N. Skovgaard-Olsen / Cognitive Science 40 (2016)



As we have already noted, the degree of perceived sufficiency can be experimentally

manipulated through disablers, which increase P(X = 1, Y = 0) and decrease P(X = 1,

Y = 1). Using Table 3, we can then see that decreasing the perceived sufficiency through

the presence of disablers should have the following impact on the model’s parameters:

b1↓↓, b0*↑. As a result, the presence of disablers should have the effect of decreasing the

endorsement of MP:

1

1þ e� b0þb1ð Þ [
1

1þ e� b0þb1� að Þ for a[ 0

and MT:

1

1þ eb


o
[

1

1þ eb


oþa

for a[ 0

A is a necessary reason for C:

b0 þ b1 � 0 $ 1

1þ e� b0þb1ð Þ �
1

2
$ MP� 1

2

b0\0 $ 1

1þ eb0
[

1

2
$ DA[

1

2

As we have already noted, the degree of necessity can be experimentally manipulated

through alternative antecedents, which increase P(X = 0, Y = 1) and decrease P(X = 0,

Y = 0). Using Table 3, we can then see that decreasing the perceived necessity through

the presence of alternative antecedents should have the following impact on the model’s

parameters: b1↓↓, b0↑↑, b0*↑. As a result, the presence of alternative antecedents should

have the effect of decreasing endorsements of DA:

1

1þ eb0
[

1

1þ eb0þa
for a[ 0

and AC: 1

1þ e� b

0
þb1ð Þ [

1

1þ e� b

0
þb1�a1þa2ð Þ for a1[ a2 [ 0

An effect of disablers on MP and MT and of alternative antecedents on AC and DA

constitutes one of the major findings in the field, as Politzer and Bonnefon (2006, p. 486)

say in the quote below with reference to two well-known experimental paradigms that go

back to the work of Byrne (1989), Thompson (1994), and Cummins (1995):

Thus, the two experimental paradigms concur to what we call here the Core Pattern of

results: Disabling conditions defeat the conclusions of MP and MT (but usually not the
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conclusions of DA and AC) and alternative conditions defeat the conclusion of DA and

AC (but usually not the conclusions of the valid MP and MT). This Core Pattern is

endorsed by most if not all researchers in the field, and, apart from the occasional breach

(see in particular Markovits and Potvin, 2001), has never been seriously questioned.

(Politzer & Bonnefon, 2006, p. 486)

It is thus pleasing to note that the present model is capable of delivering this

prediction.

5.2. Possible exceptions

However, it should also be noted that the changes noted above to the parameters of the

model further predict that the presence of disablers should lead to a decrease in AC and that

the presence of alternative antecedents should lead to a decrease in MT. However, such

effects are said usually not to occur in the quote above. Figuring out why the participants

fail to comply to these two predictions, whose reasonableness can easily be demonstrated by

Venn diagrams, is an important topic for further inquiry. This is accentuated by the fact that

the same predictions can be derived from Oaksford & Chater’s model once our way of mod-

eling the presence of disablers and alternative antecedents is plotted into Eqs. 35–38.
To illustrate the predictions, consider the following Venn diagrams (Fig. 1).

We now see on the picture to the right that after more disablers have been added, the

proportion of the Y = 1 event taken up by the X = 1 event has shrunken and the possibil-

ity of alternative antecedents as the cause of the Y = 1 event should now be attributed a

greater weight than before. Of course, this effect only occurs if Y = 1 is not a subset of

X = 1. That is to say, the effect disappears if there are no alternative antecedents and

X = 1 has a perfect degree of necessity for Y = 1, where P(X = 0, Y = 1) = 0.

Similarly, the MT effect also disappears if X = 1 is a subset of Y = 1 and X = 1 has a

perfect degree of sufficiency for Y = 1 (Fig. 2).

X=1X=1 X=1=1Y=1 Y=1

Fig. 1. Venn diagrams illustrating the AC disabler prediction.

X=1X=1 X=1X=1 Y=1Y=1

Fig. 2. Venn diagrams illustrating the MT alternative antecedent prediction.
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What happens when we add more alternative antecedents to the picture is that the

Y = 1 event grows and the Y = 0 event shrinks, as shown on the picture to the right. As

a result, the X = 1 ∩ Y = 0 event now takes up a larger portion of the Y = 0 event, and

P(X = 0|Y = 0) has become less likely than before.

To get an intuitive grasp of the ACdisabler prediction, it is perhaps best to consider the

case of causal relations. If the causal relation between A and C is used to infer the occur-

rence of the cause based on the occurrence of the effect, then disablers that weaken this

causal relation should presumably also have an impact on such abductive inferences.

Thus, it might, for instance, be most likely that the oldest brother, Tim, took care of the

siblings’ elderly, sick mother given that Tim has always had a strong sense of responsibil-

ity. But if told that Tim is himself ill and weak at the moment, the possibility that one of

the other siblings acted as a caretaker should be assigned a greater weight than it was

before. Consequently, we should be less inclined to infer that Tim was the one who took

care of his sick mother after learning that Tim himself has turned ill than we were before.

Due to the difficulty with processing negations, it is a bit harder to get one’s head

around the MT prediction. Therefore, to ease the processing demands, lexicalized nega-

tions (e.g., losing) can be used as a substitute of explicit negations (not winning).16 Let’s

suppose then that Y = 1 is the event that the blue (underwater rugby) team wins and that

X = 1 is the event at which the blue captain is present. Then the conditional rule under

consideration is “if the blue captain is present, the blue team will win.” As the prediction

only holds for less than perfect degrees of sufficiency, it is required that a disabler such

as “the blue captain is present but distracted by an important, upcoming exam” is active

some of the time. This gives us the following inference:

If the blue captain is present, blue team will win

The blue team has lost

)The blue captain was absent

Now the point is that this inference should seem more likely before further alternative

antecedents are added to the picture, for example, that the blue team has recently

acquired the star player, Zack, who is fully capable of securing a victory, as a replace-

ment for the blue captain, when he is absent. The reason is that explaining the loss by

the absence of the blue captain now also requires that he was not replaced by Zack. That

is to say, it is now rarer that the blue team loses and the proportion of the cases where

the loss is due to the absence of the blue captain has now shrunken. As a result, the pos-

sibility that the loss was due to the disabler that the blue captain was present but

distracted by an important, upcoming exam (and therefore played terribly) should now be

given a greater weight than it was before.

Such considerations indicate that these predictions are normatively correct. But the

participants are apparently not sensitive to them—which is perhaps not surprising given

that their correctness appears to have gone by unnoticed in the psychological literature as

well.17
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5.3. Cases and distinctions not covered by other theories

A is a supererogatory reason for C:

b0 þ b1[ 0 $ 1

1þ e� b0þb1ð Þ [
1

2
$ MP[

1

2

b0[ 0 $ 1

1þ eb0
\

1

2
$ DA\

1

2

In contrast with sufficient and necessary reasons, supererogatory and insufficient

reasons are normally not conceptually distinguished in the experimental literature. To

experimentally manipulate supererogatory reasons, not only the presence of alternative

antecedents should be manipulated, but also their obtainance. Therefore, whereas a neces-

sary reason would require the absence of alternative antecedents and, thus, require high

ratings of AC and DA, a supererogatory reason would require the presence and obtain-

ance of alternative antecedents and thus require low ratings for AC and DA. Necessary

and supererogatory reasons can moreover be distinguished by the prediction displayed

above that, whereas DA > 0.5 and MP ≥ 0.5 hold for necessary reasons, and DA < 0.5

and MP > 0.5 hold for supererogatory reasons.

A is an insufficient reason for C:

b0 þ b1\0 $ 1

1þ e� b0þb1ð Þ\
1

2
$ MP\

1

2

b0\0 $ 1

1þ eb0
[

1

2
$ DA[

1

2

To experimentally manipulate insufficient reasons, not only the presence of disablers

should be manipulated, but also their obtainance. Therefore, whereas a sufficient rea-

son would require the absence of disablers and, thus, require high ratings of MP and

MT, an insufficient reason would require low ratings of MP and MT (which is

known as the suppression effect in the psychological literature).18 Sufficient and insuf-

ficient reasons can moreover be distinguished by the prediction that MP > 0.5 and

DA ≥ 0.5 for sufficient reasons, whereas MP < 0.5 and DA > 0.5 for insufficient

reasons.

A is irrelevant to C: Since the prevailing semantics of conditionals in the psychology

of reasoning do not take the dimension of relevance into account, predictions of patterns

of conditional reasoning under manipulations of relevance hold the prospect of being

unique to the present model.19

In the case of irrelevance, conditionalizing on the antecedent will not affect the

probability of the consequent. It thus holds that:
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eb


0 ¼ PðX ¼ 1jY ¼ 0Þ

PðX ¼ 0jY ¼ 0Þ ¼
P X ¼ 1ð Þ
P X ¼ 0ð Þ $ b
0 ¼ ln

P X ¼ 1ð Þ
P X ¼ 0ð Þ

� �

eb0 ¼ PðY ¼ 1jX ¼ 0Þ
PðY ¼ 0jX ¼ 0Þ ¼

P Y ¼ 1ð Þ
P Y ¼ 0ð Þ $ b0 ¼ ln

P Y ¼ 1ð Þ
P Y ¼ 0ð Þ

� �

This observation, together with our earlier observation that b1 = 0 for irrelevance, can

be used to derive predictions for content manipulations of the prior probability of the

antecedent and the consequent:

The following example illustrates the approach for P(A) > 0.5, P(C) > 0.5:

P X ¼ 1ð Þ[ 0:5 $ b
0[ 0 $ 1

1þ e�b

0

[
1

1þ eb


0

$ AC[MT

P Y ¼ 1ð Þ[ 0:5 $ b0[ 0 $ 1

1þ e�b0
[

1

1þ eb0
$ MP[DA

What the predictions in Table 5 show is that when the antecedent is irrelevant to (or

statistically independent of) the consequent, the model predicts that the four inferences

coincide with what one would arrive at by using the prior probability of the conclusion

while ignoring the probability of the premise. Intuitively, this seems exactly right.

Moreover, it holds in general that:

To illustrate, if P(A) = P(C), then:

1

1þ eb


0

¼ 1

1þ eb0
$ MT ¼ DA

Table 5

Predictions for Irrelevance cases

P(C) > 0.5 P(C) = 0.5 P(C) < 0.5

P(A) > 0.5 AC > MT, MP > DA AC > MT, MP = DA AC > MT, MP < DA

P(A) = 0.5 AC = MT, MP > DA AC = MT, MP = DA AC = MT, MP < DA

P(A) < 0.5 AC < MT, MP > DA AC < MT, MP = DA AC < MT, MP < DA

Note: AC > MT: the degree of endorsement of AC >the degree of endorsement of MT.

Table 6

Further predictions for the irrelevance case

P(A) > P(C) MT < DA, AC > MP

P(A) = P(C) MT = DA, MP = AC

P(A) < P(C) MT > DA, AC < MP
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1

1þ e�b

0

¼ 1

1þ e�b0
$ AC ¼ MP

Again, the predictions in Table 6 are also what one would expect for cases where the

antecedent is irrelevant to the consequent, insofar as the probabilities of the conclusions

coincide with their prior probabilities.

Finally, it can be observed that MP = 1 � DA and AC = 1 � MT as b1 = 0 in the

case of irrelevance:

1

1þ e�b0
¼ 1� 1

1þ eb0

1

1þ e�b

0

¼ 1� 1

1þ eb


0

A is a reason against C:
One way in which to view cases where the antecedent is a reason against the consequent

is to view them as negating the consequent of cases of positive relevance. As a result, if

A is a sufficient reason for C, then A is, ipso facto, also a sufficient reason against ~C.
To see that this is so, it is easiest to use the probabilistic version of Eqs. 39 and 41:

PðY ¼ 1jX ¼ 1Þ[ 0:5 $ PðY ¼ 0jX ¼ 1Þ\0:5

0:5�PðY ¼ 1jX ¼ 0Þ $ PðY ¼ 0jX ¼ 0Þ� 0:5

Thus:

PðY ¼ 1jX ¼ 1Þ[ 0:5�PðY ¼ 1jX ¼ 0Þ $ PðY ¼ 0jX ¼ 0Þ� 0:5[PðY ¼ 0jX ¼ 1Þ

Similarly, it can be shown that if A is a supererogatory reason for C, then A is a supereroga-

tory reason against ~C; if A is a necessary reason for C, then A is a necessary reason against
~C; and if A is an insufficient reason for C, then A is an insufficient reason against ~C. To
emphasize this connection it may be useful to reformulate Eq. 41, so it becomes perspicuous

that if the relations in Eq. 39 hold for C, then the following holds for its negation:

A is negatively relevant to:C iff � b0[ � b0 � b1 ð42Þ

A is a supererogatory reason against:C iff 0[ � b0[ � b0 � b1

A is a sufficient reason against:C iff � b0� 0[ � b0 � b1

A is a necessary reason against:C iff � b0[ 0� � b0 � b1

A is an insufficient reason against:C iff � b0[ � b0 � b1 [ 0
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What this shows is that if we have a reason, A, against C that takes one of the four

forms in Eq. 41, then the predictions specified for the corresponding positive relevance

relation will hold for when A is taken as a reason for ~C and, vice versa.

6. Comparison with the Ramsey test

After this inspection of some of the predictions that can be derived from the logistic

regression model, it is time to return to the more theoretical side. On the basis of equat-

ing P(if p, q), or Acc(if p, q), with P(q|p) (cf. endnote 4), the Ramsey test is used in the

suppositional theory to estimate the probability of natural language conditionals (Evans &

Over, 2004). What it requires is that the subject adds p to his knowledge base and

estimates P(q) on this basis.

However, how exactly this is carried out is not entirely clear, as Over, Hadjichristidis,

Evans, Handley, and Sloman (2007) point out:

Explaining how the Ramsey test is actually implemented—by means of deduction,

induction, heuristics, causal models, and other processes—is a major challenge, in our

view, in the psychology of reasoning. (p. 63).

That is to say, the Ramsey test does not explain how P(q) is determined once p has

been added to the subject’s knowledge base. Here, the model allows us to come up with

the following elegant suggestion: upon adding the antecedent to our belief set, its weight

as a predictor of the consequent is used to compute the posterior probability. Moreover,

as the parameters of the model could be expressed in terms of two-sided ranks in

Eqs. 27–30, the agent’s conditional beliefs are being accessed in carrying out these

computations.

Once this computational task has been formulated, it becomes possible to start theoriz-

ing about the cognitive processes carrying out the computations (e.g., fast and frugal heu-

ristics) and the mediating factors which could influence this computation of the posterior

probability in virtue of the regression weights. In particular, knowledge about causal

models may influence the assigned weight and judgments of a hypothesis’ virtues as an

explanation may influence the weight in the case of use of Y as a predictor of X.
Moreover, the theoretical importance of this suggestion about the Ramsey test can be

explicated in the following manner. According to Evans and Over (2004) and Evans

(2007), “if then” is a linguistic device that is used to simulate possibilities by activating a

mental algorithm that makes us probe our background knowledge according to the Ram-

sey test.20 However, although it makes a great deal of sense to say that simulating possi-

bilities is useful from an evolutionary perspective, simulating possibilities is not by itself

evolutionarily useful when the antecedent is irrelevant to the consequent. This suggests

that the dimension of relevance adds to the idea of the function of the conditional as con-

sisting of simulating possibilities. More generally, conditionals can be thought as serving

an important communicative function in sharing knowledge about predictor relationships,
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which is seen in particular with indicative conditionals containing the predictive modal

“will” as in “if it rains the match will be canceled” (cf. Dancygier, 1998; Dancygier &

Sweetser, 2005).21

From this perspective, one of the main points of simulating possibilities can be seen as

consisting of evaluating whether the information on offer codifies useful information that

the subject can adapt to improve his/her ways of coping with the uncertain environment.

Therefore, when a speaker states an indicative conditional, the hearer can be seen as

using “if then” as a guide that possibilities are to be simulated, because the consequent is

to be evaluated under the supposition of the antecedent (in agreement with Evans and

Over [2004]). Yet, the evolutionary point of this exercise consists of its being a way of

evaluating whether useful predictive information is being shared. Accordingly, the hearer

should view it as a failure if the antecedent is irrelevant and leaves the probability of the

consequent unchanged. We thus begin to see how relevance considerations may enter into

this process of mental simulation in accordance with the suggestion of the computational

task involved in performing the Ramsey test outlined above.

Indeed, it is possible to go further than this and establish a link to Rescorla and Wag-

ner’s work on classical conditioning by saying that the information shared by indicative

conditionals containing the predictive modal “will” is a linguistic counterpart of the kind

of information acquired in classical conditioning. The classification that Granger and

Schlimmer (1986, p. 150) attribute to Rescorla in the following quote corresponds exactly

to the probabilistic version of Spohn’s (2013) analysis of positive relevance, negative

relevance, and irrelevance:

Experiments explicitly aimed at exploring the space of possible contingencies led

Rescorla to form the characterization that if pðUSjCSÞ[ pðUSjCSÞ, then excitatory

conditioning occurs, and if pðUSjCSÞ\pðUSjCSÞ, then inhibitory conditioning occurs,

and if pðUSjCSÞ ¼ pðUSjCSÞ, then neither type of conditioning occurs [US = uncondi-

tioned stimuli; CS = conditioned stimuli]. (Granger and Schlimmer, 1986, p. 150)

It thus seems that sensitivity to epistemic relevance is a candidate for being a more

general feature of our cognitive architecture.

However, it should be noted that although an effect of relevance has been found on

the acceptability of conditionals (Douven & Verbrugge, 2012), only a weak effect was

found for P(C|non-A) as a predictor of P(if A, C) in Over et al. (2007), and no effect was

found for P(C|non-A) as a predictor of P(if A, C) in Singmann, Klauer, and Over (2014).

There are thus unsettled theoretical and empirical questions about how such results bear

on the present work on the conditional inference task.

7. Empirical underdetermination?

Before we end, a potential objection needs to be addressed. Once a different translation

manual for probabilities into ranks is accepted with a logarithmic base of a 2 (0,1),
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where a 6¼ e, there is no a priori way of selecting a non-arbitrary value for a from the

infinity of possible values. On the face of it, this realization is devastating to any attempt

of deriving precise predictions from ranking theory if it implies that any unsuccessful

prediction could just be excused by claiming that the wrong logarithmic base had been

chosen. This might seem to be a case of radical underdetermination by the empirical

evidence. However, such an appearance would be misleading and it turns out that there is

a pragmatic solution to this problem, as we shall see.

The first thing to notice is that although there is no a priori basis for selecting a loga-

rithmic base other than the infinitesimal base, this does not mean that we are completely

without constraints. In particular, one of the main problems with the infinitesimal transla-

tion of probabilities into ranks from section 2 is that it seems to fit too poorly with the

way in which humans carve up the probability scale by concentrating all our degrees of

disbeliefs in probabilities from 0 to 0 + e. This suggests that our choice of a logarithmic

base should be constrained empirically. In this context, it is worth noting that Spohn

(2013) suggests that it would be possible to align ranking functions with the linguistic

qualifiers we use to express our degrees of beliefs. This suggests that independent

evidence of the numerical values that ordinary participants associate with verbal

expressions of degrees of beliefs should be used in selecting the logarithmic base.

If a logarithmic base of e�1 is chosen, then it will be possible for the ranks to spread

out more widely over the probability scale, which gives us the following scale (Fig. 3).

Incidentally, this scale fits nicely with the following scale, which has already received

empirical support (e.g. Witteman & Renooij, 2003, p. 120), and been successfully used

for eliciting expert knowledge for Bayesian networks (Van der Gaag, Renooij, Schijf,

Elbers, & Loeffen, 2012) (Fig. 4).22

However, it is possible that this scale may eventually be replaced by other scales that

are better able to capture the linguistic phenomenology of expressing degrees of beliefs.

Therefore, the policy that I have adopted in this paper is to use a logarithmic base of e�1

for illustrative purposes and be prepared to revise the equations if another grading

receives independent support. To the extent that such evidence is independent of the per-

formance of the model on the conditional inference task, its calibration by it should not

be seen as a question-begging attempt to dodge unpleasant challenges.

The second thing to note is that as far as model fitting goes, it actually does not

matter exactly which logarithmic base we select. The reason is that Eqs. 19–22 have

τ

Fig. 3. Two-sided ranking functions with a logarithmic base of e�1.
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three parameters that will have to be estimated on the basis of the data. Thus, if the

logarithmic base is changed, then the effect will just be to change the order of the

magnitude of the estimated regression weights, which merely changes the conventions

for interpreting the size of the estimated coefficients. Therefore, the problem of the

lack of a principled basis for choosing a logarithmic base will not prevent its use for

experimental purposes.
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Notes

1. Important qualification: it should be noted, however, that Leitgeb (forthcoming) is

challenging the consensus that one cannot represent full beliefs in probabilistic

terms. So a future, an interesting development will be comparisons between ranking
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Fig. 4. Verbal-numerical probability scale of Witteman and Renooij (2003).
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theory and Leitgeb’s approach. In Raidl and Skovgaard-Olsen (in review) a first

stab is taken.

2. Reference: cf. Spohn (2013).

3. On how to express Spohn’s taxonomy of reason relations into probabilities: it

should be noted that treating s (C|A) = 0 as the point of doxastic indifference for

two-sided ranking functions commits the theory to treating P(C|A) = 0.5 as

expressing doxastic indifference, because

sðCjAÞ ¼ 0 � loga
PðY ¼ 0jX ¼ 1Þ
PðY ¼ 1jX ¼ 1Þ

� �
¼ 0 $ PðY ¼ 0jX ¼ 1Þ

PðY ¼ 1jX ¼ 1Þ
¼ 1 $ PðY ¼ 0jX ¼ 1Þ ¼ PðY ¼ 1jX ¼ 1Þ ¼ 0:5

This point appears to have not been fully realized, with Spohn (2012) suggesting

that there is no equivalent in the probability calculus for Eqs. 11a–11d. It should
moreover be noted that the taxonomy in Eqs. 11a–11d was challenged in Olsen

(2014) (Appendix 2).

4. Important qualification: or, rather, strictly speaking, P(if A, C) = P(C|A) should be

replaced by an equation relating the acceptability of a conditional to a conditional

probability (i.e., Acc(if A, C) = P(C|A)) due to technical reasons relating to Lewis’s

triviality results. But usually this subtle difference is not observed in the psycholog-

ical literature (cf. Douven, 2015: ch. 3).

5. On conditional odds: Oi ¼ PðY ¼ 1jX1;...;XnÞ
1�PðY ¼ 1jX1;...;XnÞ for i ¼ 1; . . .; n.

6. Reference: see also Politzer and Bonnefon (2006).

7. Acknowledgment: thanks to Karolina Krzy _zanowska for pressing me on this issue.

8. Extension: an intriguing possibility is to apply Douven’s (2015, ch. 5) account of

graded validity to the present statements about the premises providing support for

the conclusion in all four inferences (MP, MT, AC, and DA).

9. Reference: Eid et al. (2010) (section 16.6), Howell (1997, ch. 9).

10. Acknowledgment: in discovering this, I was helped by the responses to my

inquiry at a forum for statisticians: stats.stackexchange.com/questions/66430.

11. Proof: eb1 ¼
PðY ¼ 1jX¼ 1Þ
PðY ¼ 0jX¼ 1Þ
PðY ¼ 1jX¼ 0Þ
PðY ¼ 0jX¼ 0Þ

¼ PðY¼1jX¼1Þ
PðX¼ 1jY ¼ 0Þ�PðY ¼ 0Þ

PðX¼ 1Þ
� PðY ¼ 0jX¼ 0Þ
PðX¼0jY¼1Þ�PðY¼1Þ

PðX¼0Þ
¼ PðY ¼ 1; X¼ 1Þ

PðX¼ 1; Y ¼ 0Þ � PðY ¼ 0; X¼ 0Þ
PðX¼ 0; Y ¼ 1Þ

12. Proof: eb


i ¼

PðX¼ 1jY ¼ 1Þ
PðX¼ 0jY ¼ 1Þ
PðX¼ 1jY ¼ 0Þ
PðX¼ 0jY ¼ 0Þ

¼ PðX¼ 1jY ¼ 1Þ
PðY ¼ 1jX¼ 0Þ�PðX¼ 0Þ

PðY ¼ 1Þ
� PðX¼ 0jY ¼ 0Þ
PðY ¼ 0jX¼ 1Þ�PðX¼ 1Þ

PðY ¼ 0Þ
¼ PðY ¼ 1; X¼ 1Þ

PðY ¼ 1; X¼ 0Þ � PðY ¼ 0; X¼ 0Þ
PðY ¼ 0; X¼ 1Þ

13. Same point in probabilistic terms: in probabilistic terms, the degree of perceived

sufficiency can be cashed out in terms of how far above 0.5 P(Y = 1|X = 1) is,

and the talk about degrees of perceived necessity can be cashed out in terms of

how far below 0.5 P(Y = 1|X = 0) is.

14. Reference: for a more extensive discussion see Olsen (2014: ch. 4).

15. Terminological note: the content variable had to receive a different name from in

the original model as we have been using “C” to designate the consequent.
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16. Reference: cf. Sperber, Cara, and Girotto (1995).

17. Reference: an extended discussion of these exceptions along with their possible

connection to the confirmation bias can be found in Olsen (2014, pp. 134–140).
18. Reference: cf. Oaksford and Chater (2010b).

19. Qualification: arguably this does not hold for the rule-free baseline condition,

where the Oaksford & Chater model coincides with the present model. How-

ever, it would hold for the presence of the conditional rule provided that a

way is found of modeling cases, where the latter is characterized by irrele-

vance or negative relevance (in addition to the positive relevance case consid-

ered in section 4.2).

20. Acknowledgment: this useful way of Evans and Over’s position is due to Karl

Christoph Klauer (personal communication).

21. Qualification: of course, conditionals also serve other important roles, such as con-

tributing to providing explanations and making generalizations. However, these

further roles seem closely related to the capacity to share information about pre-

dictor relationships. Furthermore, one approach to counterfactuals and fictions

would be to view these as domains where we “play” with our understanding of

predictor relationships and investigate what we assume would have happened

given premises that diverge from our present background beliefs.

22. Permission: this scale is here being reproduced with the kind permission of Silja

Renooij.
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